If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17x^2+19x=6
We move all terms to the left:
17x^2+19x-(6)=0
a = 17; b = 19; c = -6;
Δ = b2-4ac
Δ = 192-4·17·(-6)
Δ = 769
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{769}}{2*17}=\frac{-19-\sqrt{769}}{34} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{769}}{2*17}=\frac{-19+\sqrt{769}}{34} $
| 6t^2-8t=-5 | | n/7-10=30 | | -x-9+3=10x+5-2x | | |X-6|=-3x+10 | | 9j+14=50 | | 5g+2=5g-9 | | 8-5w=13 | | -9(-5r+1)r=3 | | i/3=-2 | | z/3-2=9 | | 3x+7=2/3(9x+12) | | 139=-10x+9 | | 9n-7=65 | | 2/5(8n-5=-9/5n | | -1u=3 | | 2b+5=20-b32 b+5=20−b | | 4-2(3x+4)=5x-3 | | 8k+3k=-28 | | 8x+10=2x+5x-28 | | d+36=46 | | c/4+28=36 | | –2+3d=–20+2d | | 160=4(-6x-8) | | 7z+13=76 | | -2(v+2)=-6v+8 | | 9s-2-1=10s+6 | | 1a+5-3a=-7 | | 7x=33=4x | | 8=x/18 | | 4x-15=1/2(7x-15) | | -18+p=36 | | 9y=8+10y |